4 research outputs found

    Do the photometric colors of Type II-P Supernovae allow accurate determination of host galaxy extinction?

    Get PDF
    We present infrared photometry of SN 1999em, plus optical photometry, infrared photometry, and optical spectroscopy of SN 2003hn. Both objects were Type II-P supernovae. The V-[RIJHK] color curves of these supernovae evolved in a very similar fashion until the end of plateau phase. This allows us to determine how much more extinction the light of SN 2003hn suffered compared to SN 1999em. Since we have an estimate of the total extinction suffered by SN 1999em from model fits of ground-based and space-based spectra as well as photometry of SN 1999em, we can estimate the total extinction and absolute magnitudes of SN 2003hn with reasonable accuracy. Since the host galaxy of SN 2003hn also produced the Type Ia SN 2001el, we can directly compare the absolute magnitudes of these two SNe of different types.Comment: 24 pages, 6 figure

    SN 2003bg: The First Type IIb Hypernova

    Get PDF
    Optical and near-infrared photometry and optical spectroscopy are reported for SN 2003bg, starting a few days after explosion and extending for a period of more than 300 days. Our early-time spectra reveal the presence of broad, high-velocity Balmer lines. The nebular-phase spectra, on the other hand, show a remarkable resemblance to those of Type Ib/c supernovae, without clear evidence for hydrogen. Near maximum brightness SN 2003bg displayed a bolometric luminosity comparable to that of other Type I hypernovae unrelated to gamma-ray bursts, implying a rather normal amount of 56Ni production (0.1-0.2 Msun) compared with other such objects. The bolometric light curve of SN 2003bg, on the other hand, is remarkably broad, thus suggesting a relatively large progenitor mass at the moment of explosion. These observations, together with the large value of the kinetic energy of expansion established in the accompanying paper (Mazzali et al. 2009), suggest that SN 2003bg can be regarded as a Type IIb hypernova.Comment: 41 pages, 12 figures, accepted by The Astrophysical Journa
    corecore